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Abstract

Differential geometric formulation of quantum gauge theory of gravity is
studied in this paper. The quantum gauge theory of gravity which is pro-
posed in the references hep-th/0109145 and hep-th/0112062 is formulated
completely in the framework of traditional quantum field theory. In order to
study the relationship between quantum gauge theory of gravity and tradi-
tional quantum gravity which is formulated in curved space, it is important to
find the differential geometric formulation of quantum gauge theory of grav-
ity. We first give out the correspondence between quantum gauge theory of
gravity and differential geometry. Then we give out differential geometric for-
mulation of quantum gauge theory of gravity.
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1 Introduction

It is known that, in classical Newton’s theory of gravity, gravity is treated as physical
interactions between two massive objects, and gravity does not affect the structure of
space-time[1]. In Einstein’s general theory of relativity, gravity is treated as geome-
try of space-time[2, 3]. In other words, in general relativity, gravity is not treated as
a physical interactions, it is a part of structure of space-time. Inspired by Einstein’s
general theory of relativity, traditional relativistic theory of gravity and traditional
canonical quantum theory of gravity is formulated in the framework of differential
geometry[4, 5, 6, 7, 8, 9].

Recently, based on completely new notions and completely new methods, Wu
proposes a new quantum gauge theory of gravity, which is based on gauge principle[10,
12]. The central idea is to use traditional gauge field theory to formulate quantum
theory of gravity. This new quantum gauge theory of gravity is renormalizable[10,
11]. A strict formal proof on the renormalizability of the theory is also given in the
reference [10, 11]. This new quantum gauge theory of gravity is formulated in the
flat physical space-time, which is completely different from that of the traditional
quantum gravity at first appearance. But this difference is not essential, for quan-
tum gauge theory of gravity can also be formulated in curved space. In gauge theory
of gravity, gravity is treated as physical interactions, but in this paper, gravity is
treated as space-time geometry. It means that gravity has physics-geometry duality,
which is the nature of gravitational interactions. In this paper, we first give out the
correspondence between quantum gauge theory of gravity and differential geometry.
Then, we give out the differential geometrical formulation of quantum gauge theory
of gravity.

2 Correspondence Between Quantum Gauge The-

ory of Gravity and Differential Geometry

In gravitational gauge theory, there are two different kinds of space-time: one is the
traditional Minkowski space-time which is the physical space-time, another is gravi-
tational gauge group space-time which is not a physical space-time. Two space-times
have different physical meanings. In differential geometry, there are also two differ-
ent space-times. This can be seen from the tetrad field in Cartan form. In cartan
form, there are two different space-times, one is base manifold, another is the tan-
gent space in Cartan tetrad. The correspondence between these two different spaces
in two different theories are: the traditional Minkowski space-time in gravitational
gauge theory corresponds to the tangent space in Cartan tetrad; the gravitational
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gauge group space-time corresponds to the base manifold of differential geometry.

In gravitational gauge theory, the metric in Minkowski space-time is the flat
metric ηµν , which corresponds to the flat metric ηab in Cartan tetrad. The metric
in gravitational gauge group space-time is the curved metric gαβ which corresponds
to the curved metric gµν in differential geometry.

In gravitational gauge theory, Gα
µ is defined by

Gα
µ = δα

µ − gCα
µ , (2.1)

which corresponds to the Cartan tetrad field e µ
a. . G−1µ

α corresponds to reference
frame field ea

.µ. That is
Gα

µ ⇐⇒ e µ
a. , (2.2)

G−1µ
α ⇐⇒ ea

. µ. (2.3)

Therefore, the following two relations have the same meaning,

gαβ = ηµνGα
µG

β
ν ⇐⇒ gµν = ηabe µ

a. e
ν

b. , (2.4)

where gαβ is the metric in gravitational gauge group space-time, and gµν is the
metric of the base manifold in differential geometry. Similarly, the following two
relations correspond to each other,

gαβ = ηµνG
−1µ
α G−1ν

β ⇐⇒ gµν = ηabe
a
. µe

b
. ν . (2.5)

Define
∂a

△
= e µ

a. ∂µ, (2.6)

which is the derivative in Cartan tetrad. It corresponds to the gravitational gauge
covariant derivative Dµ in gravitational gauge theory

Dµ ⇐⇒ ∂a. (2.7)

In gravitational gauge theory, all matter field, such as scalar fields φ(x), Dirac
field ψ(x), vector field Aµ(x), · · ·, are fields in Minkowski space, which correspond
to fields in Cartan tetrad. In other words, all matter fields in differential geometry
are defined in Cartan tetrad.
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Finally, what is the transformation in differential geometry which corresponds to
the the gravitational gauge transformation? Under most general coordinate trans-
formation, the transformation of Cartan tetrad field is :

e µ
a. → e′ µ

a. =
∂x′µ

∂xν
L b

a.e
ν

b. , (2.8)

where L b
a. is the associated Lorentz transformation. As we have stated before, under

gravitational gauge transformations, there is no associated Lorentz transformation.
In other words, under gravitational gauge transformation,

L b
a. = δb

a. (2.9)

Therefore, the gravitational gauge transformation of Cartan tetrad field is

e µ
a. → e′ µ

a. =
∂x′µ

∂xν
e ν

a. , (2.10)

We call this transformation translation transformation. So, gravitational gauge
transformation in gravitational gauge theory corresponds to the translation trans-
formation in differential geometry. According to eq.(2.6), ∂a does not change under
translation transformation,

∂a → ∂′a = ∂a. (2.11)

Eq.(2.10) corresponds to the following transformation in gravitational gauge theory,

Gα
µ → G′α

µ = Λα
β(ÛǫG

β
µ). (2.12)

Eq.(2.11) corresponds to the following gravitational gauge transformation in gravi-
tational gauge theory,

Dµ → D′

µ = ÛǫDµÛ
−1

ǫ . (2.13)

Finally, as a summary, we list some important correspondences between physical
picture and geometry picture in the following table 1.

3 Differential Geometrical Formulation of Grav-

itational Gauge Theory

In differential geometrical formulation of gravitational gauge theory, all fields are
expressed in Cartan orthogonal tetrad. In differential geometry, gravitational field
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Quantum Gauge Theory of Gravity Differential Geometry

gauge group space-time base manifold

Minkowski space-time tangent space in tetrad

index α index µ

index µ index a

Gα
µ e µ

a.

G−1µ
α ea

. µ

gαβ = ηµνGα
µG

β
ν gµν = ηabe µ

a. e
ν

b.

gαβ = ηµνG
−1µ
α G−1ν

β gµν = ηabe
a
. µe

b
. ν

Dµ ∂a

F α
µν ω̄

µ
ab

gravitational gauge transformation translation transformation

gravitational gauge covariant translation invariant

Λα
β

∂x′µ

∂xν

Λ β
α

∂xν

∂x′µ

Gα
µ → G′α

µ = Λα
β(ÛǫG

β
µ) e µ

a. → e′ µ
a. = ∂x′µ

∂xν e
ν

a.

G−1µ
α → G′−1µ

α = Λ β
α (ÛǫG

−1µ
β ) ea

. µ → e′a. µ = ∂xν

∂x′µ e
a
. ν

gαβ → g′αβ = Λα
α1

Λβ
β1

(Ûǫg
α1β1) gµν → g′µν = ∂x′µ

∂xµ1

∂x′ν

∂xν1
gµ1ν1

gαβ → g′αβ = Λ α1

α Λ β1

β (Ûǫgα1β1
) gµν → g′µν = ∂xµ1

∂x′µ

∂xν1

∂x′ν gµ1ν1

Dµ → D′

µ = ÛǫDµÛ
−1

ǫ ∂a → ∂′a = ∂a

F α
µν → F ′α

µν = Λα
β(ÛǫF

β
µν) ω̄

µ
ab → ω̄

′µ
ab = ∂x′µ

∂xν ω̄
ν
ab

Table 1: Correspondence between two pictures of gravity.
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is represented by tetrad field e µ
a. . The field strength of gravitational field is denoted

by ω̄µ
ab,

ω̄
µ
ab = −

1

g
[(∂ae

µ
b. ) − (∂be

µ
a. )] . (3.1)

ω̄
µ
ab corresponds to the field strength tensor F α

µν in gravitational gauge theory. Under
translation transformation, ω̄µ

ab transforms as

ω̄
µ
ab → ω̄

′µ
ab =

∂x′µ

∂xν
ω̄ν

ab. (3.2)

It is known that, in differential geometry, covariant derivative of cartan tetrad
vanishes

Dµe
a
. ν = 0. (3.3)

It gives out the following relation

∼

Γ
a

bc= ea
. λe

ν
b. e

µ
c. Γλ

µν + ea
. ν(∂µe

ν
b. )e

µ
c. , (3.4)

where Γλ
µν is the affine connexion and

∼

Γ
a

bc is the Cartan connexion. From this relation,
we can obtain

∼

T
a

bc= ea
. λe

µ
b .e

ν
c .T

λ
µν + gea

. µω̄
µ
bc (3.5)

where T λ
µν and

∼

T
a

bc are torsion tensors

∼

T
a

bc=
∼

Γ
a

bc −
∼

Γ
a

cb, (3.6)

T λ
µν = Γλ

µν − Γλ
νµ. (3.7)

For gravitational gauge theory, the affine connexion is the Christoffel connexion. For
Christoffel connexion, the torsion T λ

µν vanish. Then

∼

T
a

bc= gea
. µω̄

µ
bc. (3.8)

It seems that the field strength of gravitational field is related to the torsion of Car-
tan connexion.

Translation transformation of metric tensor gµν is

gµν → g′µν =
∂xµ1

∂x′µ
∂xν1

∂x′ν
gµ1ν1

. (3.9)

The metric in Cartan tetrad is denoted as ηab, which is the traditional Minkowski
metric. Under translation transformation, ηab is invariant

ηab
→ η′ab = ηab. (3.10)
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The lagrangian L for pure gravitational field is selected as

L = −
1

4
ηacηbdgµνω̄

µ
abω̄

ν
cd. (3.11)

Using eq.(2.5) and eq.(3.8), we can change the above lagrangian density into the
following form

L = −
1

4g2
ηacηbdηef

∼

T
e

ab

∼

T
f

cd . (3.12)

It is easy to prove that this lagrangian is invariant under translation transforma-
tion. The concept of translation invariant in differential geometry corresponds to
the concept of gravitational gauge covariant in gravitational gauge theory.

In order to introduce translation invariant action of the system, we need to
introduce a factor which is denoted as J(C) in gravitational gauge theory. In this
paper, J(C) is selected as

J(C) =
√

−det(gµν). (3.13)

The action of the system is defined by

S =
∫

d4x J(C) L. (3.14)

This action is invariant under translation transformation.

For real scalar field φ, its gravitational interactions are described by

L = −
1

2
(∂aφ)(∂bφ) −

1

2
m2φ2, (3.15)

where m is the mass of scalar. For complex scalar field, its lagrangian is selected to
be

L = −(∂aφ)∗(∂bφ) −m2φ∗φ. (3.16)

Under translation transformations, φ(x) and ∂aφ(x) transform as

φ(x) → φ′(x′) = φ(x), (3.17)

∂aφ(x) → ∂′aφ
′(x′) = ∂aφ(x). (3.18)

Using eq.(3.17) and eq.(3.18), we can prove that the lagrangians which are given by
eq.(3.15) and eq.(3.16) are translation invariant.
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For Dirac field, its lagrangian is given by

L = −ψ̄(γa∂a +m)ψ. (3.19)

Under translation transformations,

ψ(x) → ψ′(x′) = ψ(x), (3.20)

∂aψ(x) → ∂′aψ
′(x′) = ∂aψ(x), (3.21)

γa
→ γ′a = γa. (3.22)

Under these transformations, the lagrangian given by eq.(3.19) is invariant.

For vector field, the lagrangian is given by

L = −
1

4
ηacηbdAabAcd −

m2

2
ηabAaAb, (3.23)

where
Aab = ∂aAb − ∂bAa, (3.24)

which is the field strength of vector field. This lagrangian is invariant under the
following translation transformations

Aa(x) → A′

a(x
′) = Aa(x), (3.25)

Aab(x) → A′

ab(x
′) = Aab(x), (3.26)

ηab
→ η′ab = ηab. (3.27)

For U(1) gauge field, its lagrangian is[10, 11, 13]

L = −ψ̄ [γa(∂a − ieAa) +m]ψ −
1

4
ηacηbdAabAcd, (3.28)

where
Aab = Aab + gec

. µAcω̄
µ
ab, (3.29)

Aab = ∂aAb − ∂bAa, (3.30)

In eq.(3.28), e is the coupling constant for U(1) gauge interactions. This lagrangian
is invariant under the following translation transformation,

Aa(x) → A′

a(x
′) = Aa(x), (3.31)

Aab(x) → A′

ab(x
′) = Aab(x). (3.32)
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It is also invariant under local U(1) gauge transformation[10, 11, 13].

For SU(N) non-Abel gaueg field, its lagrangian is[10, 11, 13]

L = −ψ̄ [γa(∂a − igcAa) +m]ψ −
1

4
ηacηbdAi

abA
i
cd, (3.33)

where
Ai

ab = Ai
ab + gec

. µA
i
cω̄

µ
ab, (3.34)

Ai
ab = ∂aAb − ∂bAa + gcfijkA

j
aA

k
b . (3.35)

In above relations, gc is the coupling constant for SU(N) non-Able gauge interac-
tions. It can be proved the this lagrangian is invariant under SU(N) gauge trans-
formation and translation transformation[10, 11, 12, 13].

4 Summary

In this paper, the geometrical formulation of gauge theory of gravity is studied,
which is performed in the geometrical formulation of gravity[10, 12]. In this picture,
we can see that gravitational field is put into the structure of space-time and there
is no physical gravitational interactions in space-time.

In gravitational gauge theory, all matter field, such as scalar fields φ(x), Dirac
field ψ(x), vector field Aµ(x), · · ·, are fields in Minkowski space, which correspond
to fields in Cartan tetrad. In other words, all matter fields in differential geometry
are defined in Cartan tetrad.

In gravitational gauge theory, the symmetry transformation is gravitational gauge
transformation, while in differential geometry, the corresponding symmetry trans-
formation is translation transformation. The concept of translation invariant in
differential geometry corresponds to the concept of gravitational gauge covariant in
gravitational gauge theory.
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